Fractals Return home Last Updated: 2002-7/05,7/06,10/31 Accessed: Since 2002-7/05 Refer to this Japanese version for #5 thru #10, so far
# | Function | Domain R, I | Judge Cond. | Initial (x0,y0) | Complex (A,B) | Loop | Figure |
---|---|---|---|---|---|---|---|
01> | f=z2+C Mandel2dim | -2.0`0.5, | x2+y2>4 | (0,0) | A=f1(R,I) B=f2(R,I) | 50 | |
02> | f=z3+C Mandel3dim | +-2,+-2 | x2+y2>4 | (0,0) | A=f1(R,I) B=f2(R,I) | 50 | |
03> | f=z4+C Mandel4dim | +-2,+-2 | x2+y2>4 | (0,0) | A=f1(R,I) B=f2(R,I) | 50 | |
04> | f=z2+C Julia2dim | +-1.5,+-1.5 | x2+y2>4 | x0=f1(R,I) y0=f2(R,I) | A=-0.3, B=-0.63 | 200 | |
05> | f=z3+C Julia3dim | +-1.5,+-1.5 | x2+y2>4 | x0=f1(R,I) y0=f2(R,I) | A=0.2, B=1.1 | 100 | |
06> | f=z4+C Julia4dim | +-2,+-2 | x2+y2>4 | x0=f1(R,I) y0=f2(R,I) | A=-0.3, B=-0.63 | 100 | |
07> | f=z(z+C)/(1+C~z) Blaschke00 | +-5,+-5 | x2+y2>10 etc. |
x0=f1(R,I) y0=f2(R,I) | A=0.82, B=0.00005 | 100 | |
08> | f=z(Z+C/(1+C~z) Blaschke01 wait | +-10,+-10 | x2+y2>10 etc. |
x0=0.00001, y0=-0.0005 | A=f1(R,I) B=f2(R,I) | 50 | |
09> | f=z3-3pz+C Milnor00 p=-0.5 | +-1.5,+-1.5 | x2+y2>9 etc. |
x0=f1(R,I) y0=f2(R,I) | A=0.222, B=0.124 | 100 | |
10> | f=Lamda*sin(z) Sine | +-8,+-8 | abs(xn)>10 abs(yn)>10 |
x0=f1(R,I) y0=f2(R,I) | A=-1.0, B=0.0 | 40 | |
11> | f=z2+C; Mandel for Julia set Search | +-2.0,+-2.0 | x2+y2>4 | (0,0) | A=f1(R,I) B=f2(R,I) | 50 |
z=x+yi; C=A+Bi; Domain=(R=rs---re,I=is---ie) --- r,i= real & imaginary number,s,e= start, end.
Screen=widthxheight=720x720; 1(R,I)=rs+xx(re-rs)/width, f2(R,I)=is+yy(ie-is)/height;
xx,yy =screen coordinates(0`720).
Complex number(A,B): substitute A,B with appropriate number.
All rights reserved. Hajime Satoh 2002