Chaos Fractals
 
                         Fractals  
Return home Last Updated: 2002-7/05,7/06,10/31  Accessed:  Since 2002-7/05

Refer to this Japanese version for #5 thru #10, so far
#Function Domain
R, I
Judge Cond. Initial
(x0,y0)
Complex
(A,B)
LoopFigure
01 f=z2+C
Mandel2dim
-2.0`0.5,
}1.2
x2+y2>4 (0,0) A=f1(R,I)
B=f2(R,I)
50
02 f=z3+C
Mandel3dim
+-2,+-2
x2+y2>4 (0,0) A=f1(R,I)
B=f2(R,I)
50
03 f=z4+C
Mandel4dim
+-2,+-2
x2+y2>4 (0,0) A=f1(R,I)
B=f2(R,I)
50
04 f=z2+C
Julia2dim
+-1.5,+-1.5
x2+y2>4 x0=f1(R,I)
y0=f2(R,I)
A=-0.3,
B=-0.63
200
05 f=z3+C
Julia3dim
+-1.5,+-1.5
x2+y2>4 x0=f1(R,I)
y0=f2(R,I)
A=0.2,
B=1.1
100
06 f=z4+C
Julia4dim
+-2,+-2
x2+y2>4 x0=f1(R,I)
y0=f2(R,I)
A=-0.3,
B=-0.63
100
07 f=z(z+C)/(1+C~z)
Blaschke00
+-5,+-5
x2+y2>10
etc.
x0=f1(R,I)
y0=f2(R,I)
A=0.82,
B=0.00005
100
08 f=z(Z+C/(1+C~z)
Blaschke01
wait
+-10,+-10
x2+y2>10
etc.
x0=0.00001,
y0=-0.0005
A=f1(R,I)
B=f2(R,I)
50
09 f=z3-3pz+C
Milnor00
p=-0.5
+-1.5,+-1.5
x2+y2>9
etc.
x0=f1(R,I)
y0=f2(R,I)
A=0.222,
B=0.124
100
10 f=Lamda*sin(z)
Sine
+-8,+-8
abs(xn)>10
abs(yn)>10
x0=f1(R,I)
y0=f2(R,I)
A=-1.0,
B=0.0
40
11 f=z2+C; Mandel
for Julia
set Search
+-2.0,+-2.0
x2+y2>4 (0,0) A=f1(R,I)
B=f2(R,I)
50
z=x+yi; C=A+Bi; Domain=(R=rs---re,I=is---ie) --- r,i= real & imaginary number,s,e= start, end. Screen=widthxheight=720x720; 1(R,I)=rs+xx(re-rs)/width, f2(R,I)=is+yy(ie-is)/height;
xx,yy =screen coordinates(0`720). Complex number(A,B): substitute A,B with appropriate number. All rights reserved. Hajime Satoh 2002